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Abstract

A singie collision, time-of-flight extension of the VEM .method for the stugy of
molecule-surface vibrational energy transter is introduced. .-Tne technique helps
election between possible aiternative trial anaiytic forms of the collisional transition
probabitity function. A gaussian form is preferred over a bolzmann-exponential form

for cyciobutens isomerization to 1.3-butadiene energized Dby collisions at a silica

surface at 800 K.
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INTRODUCTION

Vibrational energy transter during collisions of a thermal distribution of gas
molecules with a solid surface is a subject of current interest. A variety of
substraie molecules have been .ouminod on various surfaces including fused silica
(1.2]. pyrex glass ([3]l. polycrystailline iron (4], platinum (5] and goid (6). Some of
the work [2.4.5] concerns measurements of vibrational accomodation coefficients. i.e..
probes the lower end of the vibrational energy distribution resuiting trom collision.
The work in this (aboratory (1.3.6] has dealt with vibrational excitation of substrate
molecules to Ilevels above the unimolecular reaction threshold Eo (»30-65 kcat
mole-]). in this case. E, acts as the absorbing barrier postulated in the original
random walk treatment of Rubin and Shuler (71

The surfaces used in the work cited above are not °“clean®, being rapidly
covered at the substrate pressures empioyed. In particular, they are deliberately
*seasoned” at high temperatures in our work: the seasoned surface is ostensibly
covered with a graphlt;c polymeric layer wnose nature may Dbe related 10 tnose

described by Somorjai, et al [8]. However. the nature of the underlying matrix.

| e.g. whether gold or silica, may continue 10 influence the nature of the layer

formed by surface treatment and its energy transfer bropemos el.

The variable encounter method (VEM) used in this laboratory has been
described in detail [1], including the single collision variant thereof (3). In generail.
cold 'molecules thermalized at some lower temperature are permitted 1o collide with
a heated surface. called the ‘reactor”. In fitting the observed energy transier
results of VEM studies, various trial anaiytic forms of the collisional transition
probability matrix P have been used [1.3.9). Prominent among these have been
Exponential (E). Gaussian (G) and Boltzmann-exponential (BE) forms. the eiements of
the latter two obey the following relations for down-transitions (energy |0ss) Dy the

molecuie:
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p%ul = ¢ oxp(-(AE-AEmp)212azl )

Is the most-probable transition. o is the

where AE = Ej -E, (EJ >El ) AEmp
standard deviation: C is a normalization constant;
p“,.l E.T,) = C B exp(-AE/<AE>) @

where B, = 0, exp(-E, /RT,) ls a Bolzmann weighting. T, being the hot reactor
surface temperature; <AE> is an average energy transfer parameter. normalization
extends over ali energies. and up-transition probabilities are found by detalled
balance. It transpires that several transition probabiiity models will often fit a
particular range of resuits aithough the E form has been found more apt for
weaker collisions, and the G form for stronger collisions: the BE form will obviously
approach the strong collision limit when <AE> becomes very large.

in an attempt to distinguish better the suitability of various modeis. Arakawa,
et al [9] studied single collision excitation o.f“ ‘é'yclobutone isomerization on a hot
seasoned silica surface maintained at various temperatures and varied the Iinitial
vibrational energy. i.e.. the Initiali (cold) temperature To of the substrate, from 273
K to 600 K. Although the E model could be ruled out. both the G and BE modeis
gave reasonable fit to the data taken at sllica surface “reactor® temperatures from
600 K to 900 K (see Fig. 3 of ref. 9a). How;vever. as may be seen from Fig. 1
(for reactor temperature 800 K, these two models make different predictions

concerning both the magnitude of the accomodation coefficients «a (aG < u

aBE < 1., and the form of the population distribution above E,. After a single

collision the new popuiation vector is given by y‘ =P go. where N0 is the Initiai

Boitzmann vector corresponding to the original (cold) temperature. (For a strong

collider. y‘ becomes y". the Boltzmann distribution at the reactor ¢(hot) tempera-

P. P

ture.) It P is partitioned at Eo. le.. B = lpl P2] then obviously the reaction
3 4

probabliity per collision Pc depends only on P i.e.. up-transition probabilities

3




terminating above EO' By contrast, measurement of a gives information only about

21. At lower energies, NG] follows the equilibrium population curvé gh quite

closely (hence ae = 1), while NBE1 drops markedly below Nh (hence aBE < W

1
BE °

a basis for an experimental “test of the relative validity of the two models.

Above EO‘ yel declines more rapidly than N This difference in siope provides
Unfortunately. as may be seen from Fig. 2. this difference in slope above Eo is
greatly reduced at lower reactor temperatures so that in this system it provides an
adequate basis for experiment only at the highest temperature employed here, 800
K. By changing the fiight distance between the. hot surface and a cold wall, the
flight time 7 during which decomposition may take place can be aitered. Since the
specific decomposition probability k(E) varies with energy in a range of operational
accessibillty (Fig. 1, tLe.. k-I(E) = O(7), it is possible to probe the form of y‘.

it may be assumed [3.9.10) that accomodation of cyciobutene on a coid

(~285K-330K) surface is complete in one collision so that partial cooling and

muitiple reflection is noi a problem.
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X Experimental
: Cyciobutene was obtained from Columbia Chemicals. >99.9%. It was further
purified by gas chromatograpbhy.

The reactor (Fig. 3) consisted of a 1-i spnehcal pyrex flask provided with an

internally-heated iathe-alignea central silica cylinder finger having a flat ground
fused silica end H positioned at the center of the flask. The thin ground silica fiat
(diam. 3 cm) constituted the hot surface. The internal cylinder was described

previously (3] and was a thermostatted liquid metal bath. B. The wall of the

2 cylinder was double jacketed and cooled. Facing the silica flat was an overiapping
.{;' flat brass surface C which was the end of a water cooled cy‘iﬂder that moved
.zq:

N smoothly on a screw S with a no-twist. no-piay action and pumped O-ring seals.

O. The flight distance between flats was changea from 0.02 cm to 56 cm.

\ Temperature measurements were made with two chromel-alumel thermocoupies which
N

-!"’ dipped into the liguid metal alloy inside the finger. The temperature of the hot
2 bath was varied from 550-820 K. The hot silica surface was seasoned with

cyclobutene (=3 x 10—4 torr) at 800 K for one hour. The reaction pressure was

:_ 08-1 x 10-4 torr. 80 the system was at the second order region. Cyclobutene
v isomerizes to 1.3-butadiene. NoO by-product was found on a FID chromatographic
:_ system. Every experimental point shown in Fig. 4 was the average of three to four
S

o separate measurements. Sampies were admitted to the flask for a period of time

that produced 1-5% reaction usually. Analysis was made on a SCOT squalane

PO
.p:..;- 3

LI B N

column Or on a 3/16° packed squalane column on Chromosord P.
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Results and Caiculations

S S A

Four average flying distances were tested: 0.046. 0.126. 0.32 and 5.6 cm.
For the former three distances., the temperature of the cold brass surface was ~285
K. For the longest distance (the finger completely retracted). the wall of the ftiask

was heated slightly by the hot surface and was maintained at »320 K. This made

TPLIY HE1 -0

a slight cﬁange in the number of collisions at given pressure with the hot surface,

y
'S
5

and Iin the initial Boitzmann distribution. The latter effect is slight and could
readily be reduced to 285 K by use of the measurements in ref. 9a.

As betore [10]. the unimotecular reaction obeyed the first order law with
respect 10 time. From the experimental rate constant k. the reaction probdabiiity per
collision Pc is glven by (Appendix A). Pc = 4kv/ca, where V is the volume of the
reactor: a is the area of the hot surface; ¢ is the average speed of the
molecules. A Pc vs. 'I‘h plot is shown in Fig. 4. The plot of P c V& flight
distance. d. is gwven in Fig. 5 for Th = 800 K.

P‘= values were aiso caicuiated by computer simuiation.

(- -] (-]
P, = Je NEenli-e®TAD]ge , f oN'(E.aE
0

k(B) is the microscopic rate constant according to RRAKM theory: T(.T) is the flight

time.; d is the average flight distance. By fitting Fig. 4. the parameters <AE> ang

AEmp to be used in £ in order 10 generate 'i] were deduced at several

temperatures over the range used. in Table 1 are given resuiting values of

<AE‘ >. the average down-jump step. and a for the (two models under

consideration. Calculated plots of P ¢ Are compared with experiment at 800 K in
Fig. 5.

RRKM values of k(E) shown in Fig. 1 were caiculated with use of activated
coripiex model A given by Eiliot and Frey [11). Their compiex C has aiso been
used but does not give as Qood concordance: this is consigered further Dbeiow.

The frequencies used for the molecule and complex are tabulated in Appendix 8.
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Discussion

Reference to Table 1 reveais reasonable concordance between the values of
this study and the values of ref. 9a for both the average down-step size, <AE1>.
and the vibrational accomodatlon. coefficients, a.

The G and BE modeis when compared with experiment in the plot of P c
vs. T In Fig. 5 reveal better concordance for the former model. Both calculations
were adjusted by a few percent so as to fit the 800 K data. The absolute values
of k(E) are sensitive to the choice of activated complex models, and thus also is
the goodness of fit of calculated values to experiment. Use of activated compiex C
of Elliot and Frey would not give as good absolute agreement but. nevertheless,
model G stili gives relatively better concordance than does model BE. We concilude
that the gaussian collisional transition probability model is the preferred one and
that., on siiica. vibrational accomodation coefficient values close to unity are also
tavored.

The only comparabie data are those of ref. 2 for octane on fuséd silica for
which intermediate values (~0.5) were reported in measurements made at lower
vibrational energies, well below reaction threshold values. Since octane is a higher
boiling species., with a larger Lennard-Jones force constant than cyclobutene. a
smaiier a vaiue is not expected. The discrepancy may suggest an energy transier
model intermediate between the two tested here. Our use of models such as E. G.
etc.. now and iIn the past. has been simply as pragmatic analytic forms having
somewhat different properties and differing physical connotations [12]. There is an
urgent need for the efforts of theoreticians to make the admittedly difficult
connections with solid state and molecular properties and potentials and with
eigenstate densities. This need exists also because of the practical importance of

thermal high-energy phenomena.
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The fit of caiculations to experiment (not shown) Is not as good at 700 K
and 600 K, aithough the G model continues to be preferred. As mentléned eariier,
the operational distinction between the two modeis decreases. but another difficulty
is the heavier and irregular d?pendence of k(E) on the complex model details at

lower temperature and energies where k(E) ceases to behave as a smooth

ME A

monotonic function of E. This difficuity would be minimized in the examination of

't
b8

larger molecules having more. and more-dispersed. vibrational frequencies. and with
a consequent wider range of energies probed above Eo at given t  orature -
apart from any fundamental difficuities of the rate theory at energ near the

reaction threshold [13). Decomposition, rather than isomerization syste would be

e
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=
>
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more favored In order to keep values of k(E) up in the experimental., accessibie

range.
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'j Table |. Average energy transfer down-step <AE]> (cm_‘) and vibrational

Ao accomodation coefficient a in the single-collision cyclobutene system.”

% 1

wN Th (K Model <AE > a

800 4330 4100° 0.95 (0.94°
700 G 4940 (4200) 0.98 0.97)
600 5550 (5640) 0.96 (0.96)
800 4230 (3500) 0.26 (0.20)
700 BE 5590 (4450) 0.33 (0.24)
600 6580 (6400) 0.38 (0.33)

% For an initial temperature To of 285 K.

® Parenthetic values are average values from ref. 9a for initial temperatures over
the range 273 K - 600 K.

c

Values from ref. 9a for initial temperature of 273 K.
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Appendix A: The calculation of collision rate and Pc values.
:;:' When the fiight distance is long. the collision rate with the ho't surface is
:: obviously governed by the flask temperature. To. if the flight distance Is only
,‘2 several millimeters or (ess. the speed distribution of the molecuies inside the
L hot-coid gap Iis Infiuenced b.y the temperature of the hot surface. A one-
‘-‘ dimensional - approximation is suitable for our case. A “reduced” temperaiure.
” T, V2 = 2 1V 2 241 9"/ 21 should ostensibly be used [14] instead :
\‘:; of T0 to estimate the collision rate. However, the usuval equation tor caiculating
_:2 the P values from the observed rate constant k is still correct in this case.
5 When the steady state is established. Ngcg = N, C, . where NO is the concentration
22 of the gas inside the gap: cg is the average speed of the gas inside the gap.
co= (BRTm/ﬂM)]lai Nf is the concentration of the gas outside the gap: C, is the
ff::: average speed of the gas outside the gap. ¢, = (BRTolﬂM)1/2.

inside the gap one has the wusual equation for calculating Pc:

P c = 4kgvg/c°a: where kg is the "real” rate constant of this isomerization reaction

inside the gap: Vg is the voiume of the gap: a is the area of the hot surface. In

our experiment Pc is equal to or less than 10"4 and the composition of the gas
ingside the gap is the same as the composition of the gas outside. The quantity
actually measured is the total rate constant k based on the whole flask. Then,
R X = K VN /(V NN ) or Xy = lz[vf(-rm/-ro)l/2

x (v )2

+V and P =
g]/Vg e

1/2
+Vg]('1‘o/'1'm) /cfa.
ot Because V; Is much bigger than V. P. = 4kV,/c a.
One further addendum. The distance between hot and cold surfaces. L, is

A

not the average flight distance, d. Assuming a cosine desorption law. then
J".,;

N a = 27 ("2 500008 /2" [T/2cosesinededs =21

i~ 0°0 0°0

=]
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Appendix B:  Vibrational Assignment (11]

L

Molecule (cm™ ') = 3058. 3126. 2916, 2955(2), 2933, 1566. 1444. 1426. 1288,

1276. 1210, 1182, 1113, 1100. 1074, 986. 875. 850, 846. 800. 640, 635, 325,
)

): 3040. 3030, 3020, 3010. 3000, 2990, 1370,

Activated Complex A (cm

1360, 1350, 1340. 1330, 1320, 1310, 1032, 1020, 1010. 1000, 990. 980, 680, 670.

O e T

660, 335.

s
T

¥’

1

E, = 32.0 kcal mol '. Reaction path degeneracy = 1.
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Captions

Fig. 1. Vibrational energy populations for cyciobutene for the reaction condition

(800. 285). — — — is the thermally equilibrated Boitzmann population at 800 K:

= + =, the Boltzmann population at the temperature 285 K: . 5951 Is the
population vector after a single collision for the Boltzmann exponentiai model.

T e T Né is the population vector after single collision according to the

Gaussian model. k(E) is also shown In this Figure. E, = 11.203 em™ ).

Fig. 2. Vibrational energy populations for cyclobutene for the reaction condition

(600. 285). Same notation as in Fig. 1.

Fig. 3. Schematic of apparatus showing hot H and cold C surfaces. internal bath, B.
fitted with heater. stirrer. thermocoupie wells and heat baffie. cooled tripie wall.
The opposing water-cooled brass surface C entered via pumped O-ring seal
space. O. on a screw action, S, that permitted 7 cm of travel. G is a
pyrex/quartz graded seal and M a quartz/stainiess steel transition. V are spaced

viewing ports for distance calibration.

Fig. 4. The reaction probability per collision Pc vs. temperature.

D . A . O v refer, respectively, to the average flight distance 5.6, 0.32.

0.126 and 0.046 cm: — — — Is the strong collider curve (Eo = 32.0
kcal mole ).
Fig. S. Pc vs. d (log scaie) at 800 K: O , experimental points; . Qaussian;

= = = Bolzmann exponential caiculations.
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